User interface modeling for convolutional neural network for complex character recognition
نویسندگان
چکیده
In this article, we design a user interface for prototype desktop application using the capabilities of author’s neural network recognizing texts in Japanese written by one two alphabets – katakana or hiragana. During design, UML notation, Use-Case Diagram, was used to build scenarios program, and BPMN notation describe program’s main algorithm. beginning article short versions previous articles were also given basics proposed method preprocessing machine learning data parameters convolutional model including its efficiency against reference EfficientNetB0. work, principles tool base designing software solution defined, algorithms program designed, created.
منابع مشابه
EMG-based wrist gesture recognition using a convolutional neural network
Background: Deep learning has revolutionized artificial intelligence and has transformed many fields. It allows processing high-dimensional data (such as signals or images) without the need for feature engineering. The aim of this research is to develop a deep learning-based system to decode motor intent from electromyogram (EMG) signals. Methods: A myoelectric system based on convolutional ne...
متن کاملA Radon-based Convolutional Neural Network for Medical Image Retrieval
Image classification and retrieval systems have gained more attention because of easier access to high-tech medical imaging. However, the lack of availability of large-scaled balanced labelled data in medicine is still a challenge. Simplicity, practicality, efficiency, and effectiveness are the main targets in medical domain. To achieve these goals, Radon transformation, which is a well-known t...
متن کاملConvolutional Neural Network for Humor Recognition
For the purpose of automatically evaluating speakers’ humor usage, we build a presentation corpus containing humorous utterances based on TED talks. Compared to previous data resources supporting humor recognition research, ours has several advantages, including (a) both positive and negative instances coming from a homogeneous data set, (b) containing a large number of speakers, and (c) being ...
متن کامل3D Convolutional Neural Network for Object Recognition
3D Object recognition is an important task in computer vision applications. After the success of convolutional neural networks for object recognition in 2D images, many researchers have designed convolution neural network (CNN) for 3D object recognition. The state of art methods provide favourable results. However, the availability of large/dynamic 3D dataset and computational complexity of CNN...
متن کاملCharacter Recognition Using Convolutional Neural Networks
Pattern recognition is one of the traditional uses of neural networks. When trained with gradient-based learningmethods, these networks can learn the classification of input data by example. An introduction to classifiers and gradient-based learning is given. It is shown how several perceptrons can be combined and trained gradient-based. Furthermore, an overview of convolutional neural networks...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ?????????? ???????????
سال: 2023
ISSN: ['0131-8942', '2524-2555']
DOI: https://doi.org/10.37791/2687-0649-2023-18-3-105-114